Software defect prediction in large space systems through hybrid feature selection and classification
نویسندگان
چکیده
Data mining and machine learning techniques have been used in several scientific applications including software fault predictions in large space systems. State-of the-art research revealed that existing space systems succumb to enigmatic software faults leading to critical loss of life and capital. This article presents a novel approach to solve this issue of overlooking software faults by utilizing both features selection and classification techniques to accurately predict software defects in aerospace systems. The main objective was to identify the preeminent feature selection and prediction technique that enhanced the software fault prediction accuracy with the optimal set of features. The investigations affirmed that a novel hybrid feature selection method revealed the most optimal set of predictive features although no particular predictive technique was suitable to predict faults in all space system datasets. Besides, the exploration of data mining techniques in fault prediction on the NASA Lunar space system software data clearly portrayed the improved fault prediction accuracy (~82% to ~98%) with the feature set selected by the proposed Hybrid Feature Selection method. Also, the random sub sampling method revealed an improved mean Matthew’s Correlation Coefficient (MCC) and accuracy ranging from ~0.7 to ~0.9 and ~86% to ~98% respectively. This we believe generates further scope for future investigations on the most contributing space system features for fault prediction thus enabling design of aerospace systems with minimal faults and enhanced performance.
منابع مشابه
Choosing software metrics for defect prediction: an investigation on feature selection techniques
The selection of software metrics for building software quality prediction models is a search-based software engineering problem. An exhaustive search for such metrics is usually not feasible due to limited project resources, especially if the number of available metrics is large. Defect prediction models are necessary in aiding project managers for better utilizing valuable project resources f...
متن کاملAn Improved Flower Pollination Algorithm with AdaBoost Algorithm for Feature Selection in Text Documents Classification
In recent years, production of text documents has seen an exponential growth, which is the reason why their proper classification seems necessary for better access. One of the main problems of classifying text documents is working in high-dimensional feature space. Feature Selection (FS) is one of the ways to reduce the number of text attributes. So, working with a great bulk of the feature spa...
متن کاملDetermining Effective Features for Face Detection Using a Hybrid Feature Approach
Detecting faces in cluttered backgrounds and real world has remained as an unsolved problem yet. In this paper, by using composition of some kind of independent features and one of the most common appearance based approaches, and multilayered perceptron (MLP) neural networks, not only some questions have been answered, but also the designed system achieved better performance rather than the pre...
متن کاملAn Improved Flower Pollination Algorithm with AdaBoost Algorithm for Feature Selection in Text Documents Classification
In recent years, production of text documents has seen an exponential growth, which is the reason why their proper classification seems necessary for better access. One of the main problems of classifying text documents is working in high-dimensional feature space. Feature Selection (FS) is one of the ways to reduce the number of text attributes. So, working with a great bulk of the feature spa...
متن کاملA New Hybrid Method for Improving the Performance of Myocardial Infarction Prediction
Abstract Introduction: Myocardial Infarction, also known as heart attack, normally occurs due to such causes as smoking, family history, diabetes, and so on. It is recognized as one of the leading causes of death in the world. Therefore, the present study aimed to evaluate the performance of classification models in order to predict Myocardial Infarction, using a feature selection method tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. Arab J. Inf. Technol.
دوره 14 شماره
صفحات -
تاریخ انتشار 2017